Comparing parameter choice methods for regularization of ill-posed problems
نویسندگان
چکیده
In the literature on regularization, many different parameter choice methods have been proposed in both deterministic and stochastic settings. However, based on the available information, it is not always easy to know how well a particular method will perform in a given situation and how it compares to other methods. This paper reviews most of the existing parameter choice methods, and evaluates and compares them in a large simulation study for spectral cut-off and Tikhonov regularization. The test cases cover a wide range of linear inverse problems with both white and colored stochastic noise. The results show some marked differences between the methods, in particular, in their stability with respect to the noise and its type. We conclude with a table of properties of the methods and a summary of the simulation results, from which we identify the best methods.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملAn Analysis of the Zero-Crossing Method for Choosing Regularization Parameters
Solving discrete ill-posed problems via Tikhonov regularization introduces the problem of determining a regularization parameter. There are several methods available for choosing such a parameter, yet, in general, the uniqueness of this choice is an open question. Two empirical methods for determining a regularization parameter (which appear in the biomedical engineering literature) are the com...
متن کاملRegularization Parameter Selection in Discrete Ill-Posed Problems - The Use of the U-Curve
To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For the practical choice of the regularization parameter α we can then employ the well-known L-curve criterion, based on the L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid regularization parameters. This pa...
متن کاملA convergence analysis for Tikhonov regularization of nonlinear ill-posed problems
In this paper we consider the a posteriori parameter choice strategy proposed by Scherzer et al in 1993 for the Tikhonov regularization of nonlinear ill-posed problems and obtain some results on the convergence and convergence rate of Tikhonov regularized solutions under suitable assumptions. Finally we present some illustrative examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 81 شماره
صفحات -
تاریخ انتشار 2011